深圳市住建工程检测有限公司
15986612515

供应商机

当前所在位置:网站首页 > 供应商机

钢结构检测鉴定专业第三方机构

钢结构检测鉴定专业第三方机构,钢结构,顾名思义,是以钢材为主要原料进行生产、加工而成的结构类型,是当今领域十分重要的类型之一。钢结构的类型,以其钢材质所特有的轻便、高强度、抗变形等特征,得到行业的普遍认可,并越来越广泛的应用到各项项目中。钢结构在一个的使用率成为了经济发展水平的标志之一,拥有越多的钢结构设施,则说明该经济、科技水平相对越高。而在我国,随着2008年奥运会主会场“鸟巢”这一钢结构的建成,钢结构更是成为了为人们所十分追捧的类型之一。 钢结构的稳定可分为结构整体的稳定和构件本身的稳定两种情况。结构整体的稳定,在结构的纵向,主要依靠结构的支撑系统来保证,如钢柱的柱间支撑,钢屋架的上、下弦水平支撑和垂直支撑等。支撑系统能否地传递结构纵向的水平荷载(风荷载、地震荷载、厂房吊车荷载等)。横向,依靠结构自身(框架或排架)的刚度来保证,主要要考虑结构自身能地传递结构横向的水平荷载。而构件本身的稳定主要由构件组成部分的自身刚度来保证,要保证构件本身及其组成部份(杆件或板件)在荷载作用下不发生屈曲而丧失稳定(这种情况主要发生在受压或压弯构件上)。钢结构检测220

一、钢结构检测鉴定技术:

常见的钢结构检测技术共有三种,依次为模拟实验技术、破坏性实验技术及无损检测技术。模拟检测实验技术即通过对钢结构产品的仿真模拟进行检测的过程。即检测过程中,通过一系列的模拟手段,制造出与实际钢结构及其相似的实验模型,同时,另模拟出实验模型所处的现实环境及可能遭受的压力等破坏。以该方式对实验模型进行检测,通过对模型性能的测定确定被测钢结构的性能好坏。模拟实验是一类可信度较高的实验方法,由于所模拟的实验模型及实验环境真实、直观,故检测结果争议性小。但是,由于模拟实验检测周期长,检测技术难度较高,故该检测技术具有明显的实用性缺陷。 
破坏性实验技术与无损检测技术二者是相互对应的两种检测技术方式。其中,破坏性实验,即需要通过对待测钢结构工件进行一定破坏以测定其性能的方式。具体步骤为首先对全部待检工件进行随机抽样,对抽得的样品进行针对性破坏,在样品被破坏的过程中对样品进行检测,检测结果即代表此批待检产品的总体性能。破坏性实验所得到的检测结果真实、直观,可信度高,但是由于实验采取抽样检测的方式,故无法实现对全部产品的整体检测,实验效果不甚全面。 
无损检测技术,与破坏性实验相反,是通过不对待测产品造成任何损伤的办法对钢结构工件实施质量检测的技术手法。通过无损检测后的工件可较为明确的获悉其质量水平,是否损伤,损伤部位,等等。同时,工件的物质状态、各方面性质均不会受到破坏。无损检测技术内容丰富,检测效率高,检测内容覆盖面广,结果可信度高,是目前应用十分广泛的一项钢结构检测方式。 

钢结构检测223 

二、本公司钢结构检测鉴定项目实例展示:

某房屋建造于2015 年,为单层钢结构厂房 ,长9610 m ,宽9610 m ,檐口高715 m ,面积约9 300 m2 。主结构采用3 跨门式刚架,跨度均为32 m  。屋面檩条和墙梁均采用C 型钢,围护采用彩钢夹芯板。该厂房建成后,经业主和当地等有关单位验收时发现,该厂房上部结构所用材料与设计图纸不符(图纸要求Q345 - B) ,存在偷工减料现象。
2  现场情况调查
通过现场实地检测,该厂房几何尺寸、构件尺寸、节点等与设计图纸相符,钢梁挠度和柱垂直度均满足规范要求。
3  力学性能试验法
由于该厂房为已有,考虑到厂房结构的安全,故现场抽取6 根具有代表性的钢构件进行力学性能测试,每根构件翼缘和腹板各取3 个试样进行拉伸、冷弯及冲击试验。试验结果表明: 所取试样的力学性能均符合Q235 钢材的要求,而力学性能达到Q345 钢材要求的试样仅占1617 %。Q345 - B 抗拉强度;Q235 - B 抗拉强度;实测抗拉强度
3.1  构件板材化学成分分析
现场抽取30 %的梁、柱构件钻取钢屑(其中包括进行力学性能试验的6 根构件) ,然后进行钢材化学成分分析。分析结果表明:受检钢材锰、硅含量符合Q345规定范围的约占58 % ,其余42 %的试样锰、硅含量介于Q235~Q345 规定范围之间,高于Q235 的要求。
碳含量符合Q235 规定范围的约占91 % ,7 %的试样碳含量在01093 %~ 01098 %之间( 接近Q235 碳含量下限) ,其余2 %的试样碳含量分布在0123 %~0125 %范围内,略高于Q235 碳含量上限。硫、磷等有害元素的含量在01028 %~01043 %之间,低于有关规范规定的上限值(01045 %) ,全部满足规范要求。
3.2 焊缝检测
采用CTS - 2000 仪器对约30 %的梁、柱翼缘板的对接焊缝进行超声波检测。结果表明:受检焊缝均达到二级焊缝要求 ,符合设计要求。
4  构件材性综合分析
总上所述,本次主要使用了3 种方法抽样检测厂房主要结构构件的材性:
HL - 300 里氏硬度计检测结果表明,受检钢构件抗拉强度均达到Q235 钢材的要求,约25 %的受检构件达到Q345 钢材的要求。钢材力学性能试验结果表明,全部试样的力学性能符合Q235 钢材的要求(其中包括部分碳含量超标的构件) ,仅1617 %的试样力学性能达到Q345钢材的要求。受检钢材碳、锰、硅含量符合Q345 钢材规定范围的约占58 %,其余42 %的试样锰、硅含量介于Q235~Q345 规定范围之间,高于Q235 钢材的标准。锰、硅属有益元素,但过量时会影响钢材的可焊性和抗锈蚀性。碳含量符合Q235 规定范围的约占91 % ,7 %的试样碳含量在01093 %~01098 %之间(接近Q235 碳含量下限) ,其余2 %的试样碳含量分布在0123 %~0125 %范围内,略高于Q235 碳含量上限。碳含量偏高,则钢材强度提高,但同时钢材的塑性、韧性、冷弯性能、可焊性及抗锈蚀能力下降。硫、磷等有害元素的含量均满足规范要求。由上可见,受检钢构件大部分未达到Q345 钢材的标准;虽然少量受检钢构件的化学成份较Q235钢材有所差异,但考虑到该检验方法为间接法,且力学性能试验表明钢材塑性、韧性、冷弯性能等均满足Q235 钢材的标准,焊缝检测合格,且所有钢构件均进行过防锈处理。因此可以认为受检钢构件达到Q235 钢材的要求。
5、鉴定结论
1) 原楼房屋结构状况基本完好且无结构损坏情况(经检测柱、梁混凝土强度及砖、砂浆强度达到原设计要求) ;原楼房屋存在一定沉降差异,但房屋四角处的最大倾斜值仅为2111 ‰,小于规范规定的4 ‰限值;各处墙面上未见明显裂缝,总体上可认为该楼的沉降较为均匀并已达稳定。
2) 第一次验算(结构未改变) 。各层墙体高厚比均符合规范规定要求;但某些部位墙段在墙体受压承载力验算及墙体抗震验算方面、第二层与底层侧向刚度比、地震作用楼层最大位移角及底层框架柱实配钢筋等方面不满足7 度抗震设防要求。
3) 第二次验算(底层增设抗震墙后) 。第二层与底层侧向刚度比、地震作用楼层最大位移角及底层框架柱实配钢筋等均满足了规范规定和计算要求,但二、三层仍有个别墙体受压承载力不满足要求,必须进行加固。

钢结构检测17 

三、本公司除办理钢结构检测鉴定,还承接以下全国业务范围:

1.结构性鉴定;

 2物大修前的全面检查;

3重要物的定期检查;

4结构安全性鉴定:

5危房鉴定及各种应急鉴定;

6房屋改造前的安全检查;

7临时性房屋需要延长使用期的检查;

8使用性鉴定中发现的安全问题。

9正常使用性鉴定:

10物日常维护的检查;

11物使用功能的鉴定;

12结构加固设计:

14自然灾害损坏房屋鉴定:如风灾、水灾、火灾等。

15租赁房屋前的结构安全检查。房屋增层、改建前的鉴定。

16房屋抗震鉴定:如学校房屋抗震鉴定。

17租赁房屋前的结构安全检查。地基承载力鉴定。

钢结构检测24 

四、钢结构检测鉴定不满足相关规范要求的,需要进行加固处理:


钢结构构件在实际使用过程中,常常会由于使用条件的变化、或设计施工中的缺陷造成结构或局部承载能力达不到设计要求、或荷载的增加(增加保温层、增加吊车或增大吊车吨位),或是材料质量有缺陷,或是构造处理不当、或使用过程中的磨损等原因出现结构构件损坏而需要加固。对钢结构构件进行加固的技术措施可以分为两大类:其一是改变结构的计算简图和进行内力调整;其二是对构件及连接进行加固。本文主要对钢结构连接的加固技术和方法进行探讨。
钢结构连接加固有卸荷加固和带负荷加固两种,为不影响使用,一般是在原位置上,利用原结构在负荷状态或卸荷、部分卸荷的情况下进行。不得已时才会将原有结构拆卸进行加固。当原有结构加固工作量太大,其经济效益不高时,也可用新结构代替,而将原有构件移作它用。

钢结构连接的加固方法常用的有焊接连接、普通螺栓连接和高强螺栓连接,在确定加固方案时必须要慎重考虑以下几点:
1. 应根据加固对象原有的连接方法而选择加固方法。
2. 在同一受力部位连接的加固中,应采用刚度相近的方案。
3. 加固连接所用材料应与结构中原有连接材料的性质相匹配,其技术指标和强度设计值应符合钢结构设计规范的有关规定。
4. 制订合理的施工工艺和安全措施,并核算结构连接在加固负荷下应具有足够的承载力。
下面分别探讨一下钢结构连接加固的几种方法。
焊接连接的加固

钢结构加固一般采用焊接连接的加固,焊接连接因方法简单,设备简易,作业条件容易达到,施工进度快而被广泛采用。但对于铸铁、熟铁等的结构不能采用焊接加固。焊接连接的加固方法有:增加焊缝长度、提高焊缝有效厚度、或者两者同时增加。当上述方法不能满足加固要求时,可采用附加连接板实施加固。加固角焊缝的长度和焊接尺寸或熔焊层的高度,应由连接处加固前后设计受力改变的差值,并考虑原有连接实际可能的承载力计算确定。计算时应对焊缝的受力重新进行分析并考虑加固前后焊缝的共同工作。同时,要尽量避免采用长度垂直于受力方向的横向焊缝,当无法避免时,应采用专门的技术措施和施焊工艺,确保施工时的安全。


m.liquanhong.b2b168.com

返回目录页